

NASA Cost Symposium

August 25-27, 2015

Presented by:

Andy Prince – NASA MSFC

and

Richard Webb – KAR Enterprises

OUTLINE

CASTS – Where it is today

- Model Development Process
- Historical Database
- Estimating Approach
 - Example
- Results/Observations

NEXT STEPS – Work in process

- Virtual Black Books
- Functional Breakdown Structure
- CER Updates
- Full Life Cycle Cost Capability

Engineering Cost Office

Overall Goals

Philosophical framework

- Develop a new, unique cost model for use in estimating space transportation systems, including crewed systems, and earth-to-orbit and in-space transportation systems.
- Based on historical database consisting exclusively of transportation/crew systems
- Credible, Supportable, Defendable estimates

Initial Emphasis: Basis of Estimate

- Traceability and transparency of estimate to database
 - Development and documentation of the database and analytical processes behind the CERs incorporated in the model
 - Provide flexibility to use CASTS data/model as point-of-departure for tailored/customized estimates

 KAR

TECHNICAL

Engineering Cost Office

Model Development Process

CASTS development process

Historical Database

- Reconstituting Historical Database has been primary focus to date
 - NAFCOM heritage: trace back to source documents
 - New systems: Develop suitability for inclusion in database
 - DOCUMENTATION from sources to CERs
 - Analysis spreadsheets, references

Roster of systems currently included in CASTS CER datasets

Atlas V Common Core Booster

Atlas V Centaur

Apollo Command/Service Module

Apollo Lunar Module

Centaur D

Centaur G' (Shuttle Centaur)

Centaur G' CISS - ASE

Shuttle External Tank

Shuttle Orbiter

Shuttle Solid Rocket Motor

Shuttle Solid Rocket Booster

Saturn V 1st Stage (SIC)

Saturn V 2nd Stage (SII)

Saturn V 3rd Stage (SIVB)

Titan Centaur

Titan IV 5m Fairing

Atlas I, II, IIA, IIAS

Super Lightweight External Tank

Liquid Engines

F1

J2

J2X

RS27 RD180

RL10

RS68

SSME

<u>Solids</u>

Titan IV SRMU

Athena Castor 120

Trident D5

Shuttle RSRM

Atlas IIAS Castor 4A

Atlas V SRM

Pegasus

Ariane V EAP-P230

Software

SSME Adv Health Mgt Sys

Orbiter Cockpit Avionics Upgrade

Orbiter Primary Avionics Software Sys

Orbiter Backup Flight Software

BRAHMS

DART

X33

Centaur G'

Atlas II

Atlas V

Work Breakdown Structure

CASTS - Work Breakdown Structure

Program Segment						
	Progr	Program Mgt & Support				
	Syste	ms Engr & Integ				
Vehic	le Se	gment				
	Integration, Ass'y, Checkout					
	Crew Structures					
		Wing				
		Tail				
		Fuselage/Body				
		Capsule Structures				
	Thrust Structure					
	Adapters					
	Secondary/Support Structs					
	Tanks					
	Inter	tank				

Vehicle Segment (cont'd)						
Mec	Mechanisms					
	Thrust Vector/Flight Control					
	Separation					
	Recovery					
	Other					
Main Propulsion Systems						
Ther	Thermal Protection					
	Passive					
	Re-Entry Leading Edges					
	Re-Entry Heat Shield					
Prop	ulsion					
	Liquid Engines					
	Solid Motors					
	Reaction Ctl/Orb Maneuv Sys					

_						
Vehicle Segment (cont'd)						
Avior	Avionics & Power					
	Guidance, Nav, & Control					
	Telemetry & Tracking					
	Command, Ctl, Data Handling					
	Range Safety/Flt Termination					
Elect	Electric Power					
Shro	Shroud/Fairing					
Crew	Crew Systems					
	Environ Ctl & Life Supt					
	Displays/Controls					
Software Segment						
Fligh	t Software					
Grou	Ground Software					
Test Segment						
Syste	System Test Operations					
Syste	System Test Hardware					
Ground Se	Ground Segment					
	Ground/Test Support Equip					
	Tooling					

CERs by WBS Element

Work Breakdown Structure – Cost Estimating Relationships

Program Segment						
	Progr	Program Mgt & Support				
	Syste	ms Engr & Integ				
Vehic	le Seg	gment				
	Integration, Ass'y, Checkout					
	Crew Structures					
		Wing				
		Tail				
		Fuselage/Body				
		Capsule Structures				
	Thrust Structure					
	Adapters					
	Secondary/Support Structs					
	Tanks					
	Inter	tank				

Vehicle Segment (cont'd)						
Mecl	Mechanisms					
	Thrust Vector/Flight Control					
	Separation					
	Recovery					
	Other					
Main	Main Propulsion Systems					
Ther	Thermal Protection					
	Passive					
	Re-Entry Leading Edges					
	Re-Entry Heat Shield					
Prop	Propulsion					
	Liquid Engines					
	Solid Motors					
	Reaction Ctl/Orb Maneuv Sys					

Vehicle Segment (cont'd)								
	Avionics & Power							
		Guidance, Nav, & Control						
		Telemetry & Tracking						
	Command, Ctl, Data Handling							
		Range Safety/Flt Termination						
	Elect	ric Power						
	Shroud/Fairing							
	Crew	Systems						
		Environ Ctl & Life Supt						
		Displays/Controls						
Software Segment								
	Flight Software							
	Ground Software							
Test Segment								
	System Test Operations							
	System Test Hardware							
Ground Segment								
		Ground/Test Support Equip						
		Tooling						

CER Type					
Cost-to-Cost					
Des & Dev + Flt Unit (wt/other)					
Adjustment Factor					
Multi Var CER (DD & FU)					

Estimating Approach

Why this approach?

- Significant data "clutter"
 - Minimal number data points with multiple potential variables
 - Lack of/dissimilar definitions between sources
 - Poor predictive value (P-values >> .05)
 - Counter intuitive results (cost > over time, cost < increased complexity)
- Conflicting/countervailing influences between potential variables
 - Time vs. degree of new design vs. technology level vs. SOA vs. etc.
- Calculated "adjustment factor" for each data point
 - Not a "complexity" factor says nothing about why value is what it is
- Not the "final answer" (see Next Steps)

Example CASTS CER

- CASTS CER Inputs/Process/Outputs Example Thrust Structure
 - <u>Inputs</u>: 30,000 lbs, in-line, multiple engines, Al 2219, extensive test program ("man-rateable"), constant 2015 \$ (mil), 20 production units at rate of 4 per year, fabricated in-house by prime contractor (e.g. MAF)
 - Process:
 - Thrust Structure CER
 - D&D\$ = .1160 x wt^.6693 x adjustment factor
 - FU\$ = .0079 x wt^.8121 x adjustment factor
 - Large (SIC = 55Klb, SII = 7Klb, ET = n/a), in-line, new design, multiple engines
 - Use SIC DD (1.1271) and FU (.7795) adjustment factors

Subsystem Adjustment Factors								
Include?	Subsystem	Sub-Group	Mission	WBS Item	D&D Factor	Flt Unit Factor		
	Thrust Structure		SIVB	Thrust Structure	1.48	1.34		
Х	Thrust Structure		SIC	Thrust Structure	1.13	0.78		
	Thrust Structure		SII	thrust struct	1.09	1.57		
	Thrust Structure		AV CCB	Aft Transition	0.62	0.76		
	Thrust Structure		C-D	Thrust	0.90	0.80		

Example CASTS CER

- CASTS CER Inputs/Process/Outputs
 - 2. System Test Hardware
 - Use CER (vs. standard 1.30 factor) = 2.313 x FU\$^.9679
 - For Production Cost assume 90% Crawford learning curve (typical); 65% rate curve (ET ≈ 60%)
 - Outputs:

 $D&D = $129.9 = .1160 \times 30,000^{\circ}.6693 \times 1.127$

 $FU = $26.9 = .0079 \times 30,000^{\circ}.8121 \times .7795$

 $STH = $56.0 = 2.313 \times 26.9^{\circ}.9679 \times 1.000$

Example CASTS CER

- CASTS CER Inputs/Process/Outputs
 - Outputs (cont'd):

165.0

158.9

KAR

MIPSS

20

TOTAL

Example CASTS CER

CASTS Example Analyses

- Sensitivity Analyses:
 - Questions: How does unit and total production cost change if...
 - 1. We fly 1 more flight per year? 2?
 - 2. We fly 20 flights in 7 years? 28?
 - Process:
 - Change total production units and flights/year
 - Answers:
 - 1. +\$9M Total, -\$1.3M AUC; +\$17M Total, -\$2.2M AUC
 - 2. +\$37M Total, +\$1.8M AUC; +\$55M Total, -\$1.4M AUC

Years Ops:	5		
Rate Curve:	65%		
Flts/Year	4	5	6
Total Flights	20	25	30
Total Prod \$	\$ 165.0	\$ 174.1	\$ 181.9
Avg Unit \$	\$ 8.25	\$ 6.96	\$ 6.06
Var CPF	\$ 2.42	\$ 2.35	\$ 2.29
Fixed CPY	\$ 22.10	\$ 21.44	\$ 20.90

Years Ops:	7	
Rate Curve:	65%	
Flts/Year	3	4
Total Flights	20	28
Total Prod \$	\$ 202.2	\$ 220.5
Avg Unit \$	\$ 10.11	\$ 7.88
Var CPF	\$ 2.48	\$ 2.31
Fixed CPY	\$ 22.65	\$ 21.10

Results/Observations

Initial results

- Ran SLS Core stage through PCEC using CASTS CERs
 - Did not use any adjustment factors all = 1.0
 - Result was less than 5% different than PRICE-based estimate
 - At top level; comparison at lower levels still to-do

Observations relative to CASTS development effort to date

- Data
 - Each point is important need to understand each one as much as possible – drive back to source documentation
 - Significant amount of data clutter between sources
 - Different/inconsistent definitions, accounting methods, etc.
- Independent Variables
 - Each datapoint is unique mix of potential independent variables
 - Time, complexity, inheritance, system evolution, SOA, materials, processes, configuration/definition, etc.

TECHNICAL

Engineering Cost Office

Next Steps – Work In Process

- Virtual Black Books
 - CADRE-like not a CADRE, but same type of information
 - Will be available online through REDSTAR

CASTS – Next Steps

Functional Breakdown Structure

- Cost delineated by functions (Engineering, Touch, Manufacturing Support, Quality Assurance, etc.) rather than end items (weight, thrust, lines of code, etc.)
- Much historical data is in this format; not always by end item
- Many (most?) cost reduction/affordability approaches relate most directly to functions, not end items
 - E.g. Touch labor vs. automated welding; SR&QA vs. reduction in Gov't Mandated Inspection Points (GMIPS); Facility O&M vs. shared facilities
- Schedule tasks usually address functions directly, not end items
 - E.g. "design", "analyze", "test", "fabricate", "inspect", etc.
- FBS capability will allow more visibility/flexibility regarding estimates of (for instance):
 - Potential cost/savings of affordability initiatives
 - Integration of parametric-based estimates with JCL schedules

CASTS – Next Steps

CER Updates

- Expand historical database/incorporate in CERs
- Explore meaningful independent variables
 - Replace Adjustment Factors
- Investigate development of objective Complexity Generators

Full Life Cycle Cost Capability

- Time dimension Full life cycle cost estimating capability: "sand charts"
 - Spread vs. non-spread cost
 - Cost as function of flight/production rates over time
 - (Capability) Nonrecurring facilities, mission and launch ops

CASTS – Summary

Model and data: Traceability and transparency

- Substantial progress made in reviewing, updating, and understanding the crewed and space transportation systems' historical database.
- Documentation of the historical database provides a detailed but easy-to-use resource for NASA cost analysts to better understand the database itself and, as a result, provides a better basis of estimate for future estimates.

Estimating capability: Depth and breadth

The initial set of CASTS CERs released with PCEC ver. 2.0, when coupled with the
accompanying documentation, provide a set of estimating alternatives that cover
the breadth of end items that comprise crewed and space transportation systems
and a depth of understanding of the historical database upon which the estimate
is based.

Credible, Supportable, Defendable

